top of page

Relativity before Einstein

“Relativity” is a word we associate with Einstein, but the concept goes much further back. Galileo, Newton, and many others were well aware that velocity (the speed and direction of an object’s motion)–is relative. In modern terms, from the batter’s point of view, a well-pitched fastball might be approaching at 100 miles per hour. From the baseball’s point of view, it’s the batter who is approaching at 100 miles per hour. Both descriptions are accurate; it’s just a matter of perspective. Motion has meaning only in a relational sense: An object’s velocity can be specified only in relation to that of another object. You’ve probably experienced this. When the train you are on is next to another and you see relative motion, you can’t immediately tell which train is actually moving on the tracks. Galileo described this effect using the transport of his day, boats. Drop a coin on a smoothly sailing ship, Galileo said, and it will hit your foot just as it would on dry land. From your perspective, you are justified in declaring that you are stationary and it’s the water that is rushing by the ship’s hull. And since from this point of view you are not moving, the coin’s motion relative to your foot will be exactly what it would have been before you embarked.

Of course, there are circumstances under which your motion seems intrinsic, when you can feel it and you seem able to declare, without recourse to external comparisons, that you are definitely moving. This is the case with accelerated motion, motion in which your speed and/or your direction changes. If the boat you are on suddenly lurches one way or another, or slows down or speeds up, or changes direction by rounding a bend, or gets caught in a whirlpool and spins around and around, you know that you are moving. And you realize this without looking out and comparing your motion with some chosen point of reference. Even if your eyes are closed, you know you’re moving, because you feel it.

Thus, while you can’t feel motion with constant speed that heads in an unchanging straight-line trajectory-constant velocity motion, it’s called-you can feel changes to your velocity. But if you think about it for a moment, there is something odd about this. What is it about changes in velocity that allows them to stand alone, to have intrinsic meaning? If velocity is something that makes sense only by comparisons – by saying that this is moving with respect to that-how is it that changes in velocity are somehow different, and don’t also require comparisons to give them meaning? In fact, could it be that they actually do require a comparison to be made? Could it be that there is some implicit or hidden comparison that is actually at work every time we refer to or experience accelerated motion? This is a central question we’re heading toward because, perhaps surprisingly, it touches on the deepest issues surrounding the meaning of space and time.

Picture Credit: www.pinterest.com


Galileo’s insights about motion, most notably his assertion that the earth itself moves, brought upon him the wrath of the Inquisition. A more cautious Descartes, in his Principia Philosophiae, sought to avoid a similar fate and couched his understanding of motion in an equivocating framework that could not stand up to the close scrutiny Newton gave it some thirty years later. Descartes spoke about objects’ having a resistance to changes to their state of motion: something that is motionless will stay motionless unless someone or something forces it to move; something that is moving in a straight line at constant speed will maintain that motion until someone or something forces it to change.

But what, Newton asked, do these notions of “motionless” or “straight line at constant speed” really mean? Motionless or constant speed with respect to what? Motionless or constant speed from whose viewpoint? If velocity is not constant, with respect to what or from whose viewpoint is it not constant? Descartes correctly teased out aspects of motion’s meaning, but Newton realized that he left key questions unanswered. Newton —a man so driven by the pursuit of truth that he once shoved a blunt needle between his eye and the socket bone to study ocular anatomy and, later in life as Master of the Mint, meted out the harshest of punishments to counterfeiters, sending more than a hundred to the gallows—had no tolerance for false or incomplete reasoning. So he decided to set the record straight.

When we left the bucket, both it and the water within were spinning, with the water’s surface forming a concave shape. The issue Newton raised is, Why does the water’s surface take this shape? Well, because it’s spinning, you say, and just as we feel pressed against the side of a car when it takes a sharp turn, the water gets pressed against the side of the bucket as it spins. And the only place for the pressed water to go is upward. This reasoning is sound, as far as it goes, but it misses the real intent of Newton’s question. He wanted to know what it means to say that the water is spinning: spinning with respect to what? Newton was grappling with the very foundation of motion and was far from ready to accept that accelerated motion such as spinning—is somehow beyond the need for external comparison. A natural suggestion is to use the bucket itself as the object of reference. But, as Newton argued, this fails. You see, at first when we let the bucket start to spin, there is definitely relative motion between the bucket and the water, because the water does not immediately move. Even so, the surface of the water stays flat. Then, a little later, when the water is spinning and there isn’t relative motion between the bucket and the water, the surface of the water is concave. So, with the bucket as our object of reference, we get exactly the opposite of what we expect: when there is relative motion, the water’s surface is flat; and when there is no relative motion, the surface is concave. In fact, we can take Newton’s bucket experiment one small step further. As the bucket continues to spin, the rope will twist again (in the other direction), causing the bucket to slow down and momentarily come to rest, while the water inside continues to spin. At this point, the relative motion between the water and the bucket is the same as it was near the very beginning of the experiment (except for the inconsequential difference of clockwise vs. counterclockwise motion), but the shape of the water’s surface is different (previously being flat, now being concave); this shows conclusively that the relative motion cannot explain the surface’s shape. Having ruled out the bucket as a relevant reference for the motion of the water, Newton boldly took the next step. Imagine, he suggested, another version of the spinning bucket experiment carried out in deep, cold, completely empty space. We can’t run exactly the same experiment, since the shape of the water’s surface depended in part on the pull of earth’s gravity, and in this version the earth is absent. So, to create a more workable example, let’s imagine we have a huge bucket—one as large as any amusement park ride —that is floating in the darkness of empty space, and imagine that a fearless astronaut, Homer, is strapped to the bucket’s interior wall. (Newton didn’t actually use this example; he suggested using two rocks tied together by a rope, but the point is the same.) The telltale sign that the bucket is spinning, the analog of the water being pushed outward yielding a concave surface, is that Homer will feel pressed against the inside of the bucket, his facial skin pulling taut, his stomach slightly compressing, and his hair (both strands) straining back toward the bucket wall. Here is the question: in totally empty space —no sun, no earth, no air, no doughnuts, no anything —what could possibly serve as the “something” with respect to which the bucket is spinning? At first, since we are imagining space is completely empty except for the bucket and its contents, it looks as if there simply isn’t anything else to serve as the something. Newton disagreed. He answered by fixing on the ultimate container as the relevant frame of reference: space itself. He proposed that the transparent, empty arena in which we are all immersed and within which all motion takes place exists as a real, physical entity, which he called absolute space. We can’t grab or clutch absolute space, we can’t taste or smell or hear absolute space, but nevertheless Newton declared that absolute space is a something. It’s the something, he proposed, that provides the truest reference for describing motion. An object is truly at rest when it is at rest with respect to absolute space. An object is truly moving when it is moving with respect to absolute space. And, most important, Newton concluded, an object is truly accelerating when it is accelerating with respect to absolute space.

Newton used this proposal to explain the terrestrial bucket experiment in the following way. At the beginning of the experiment, the bucket is spinning with respect to absolute space, but the water is stationary with respect to absolute space. That’s why the water’s surface is flat. As the water catches up with the bucket, it is now spinning with respect to absolute space, and that’s why its surface becomes concave. As the bucket slows because of the tightening rope, the water continues to spin —spinning with respect to absolute space —and that’s why its surface continues to be concave. And so, whereas relative motion between the water and the bucket cannot account for the observations, relative motion between the water and absolute space can. Space itself provides the true frame of reference for defining motion. The bucket is but an example; the reasoning is of course far more general. According to Newton’s perspective, when you round the bend in a car, you feel the change in your velocity because you are accelerating with respect to absolute space. When the plane you are on is gearing up for takeoff, you feel pressed back in your seat because you are accelerating with respect to absolute space. When you spin around on ice skates, you feel your arms being flung outward because you are accelerating with respect to absolute space. By contrast, if someone were able to spin the entire ice arena while you stood still (assuming the idealized situation of frictionless skates)—giving rise to the same relative motion between you and the ice—you would not feel your arms flung outward, because you would not be accelerating with respect to absolute space. And, just to make sure you don’t get sidetracked by the irrelevant details of examples that use the human body, when Newton’s two rocks tied together by a rope twirl around in empty space, the rope pulls taut because the rocks are accelerating with respect to absolute space. Absolute space has the final word on what it means to move. But what is absolute space, really? In dealing with this question, Newton responded with a bit of fancy footwork and the force of fiat. He first wrote in the Principia “I do not define time, space, place, and motion, as [they] are well known to all,” sidestepping any attempt to describe these concepts with rigor or precision. His next words have become famous: “Absolute space, in its own nature, without reference to anything external, remains always similar and immovable.” That is, absolute space just is, and is forever. Period. But there are glimmers that Newton was not completely comfortable with simply declaring the existence and importance of something that you can’t directly see, measure, or affect.

He wrote, It is indeed a matter of great difficulty to discover and effectually to distinguish the true motions of particular bodies from the apparent, because the parts of that immovable space in which those motions are performed do by no means come under the observations of our senses. So Newton leaves us in a somewhat awkward position. He puts absolute space front and center in the description of the most basic and essential element of physics —motion—but he leaves its definition vague and acknowledges his own discomfort about placing such an important egg in such an elusive basket. Many others have shared this discomfort. Article supported reference by: -Brian Greene, Stephen Hawking, Galileo Galelei, Issac Newton, Michio Kaku, Albert Einstein

Comments


unnamed (1).jpg

Hi, thanks for stopping by!

You're in the website called THE MYSTERIOUS UNIVERSE 369.!!!

I want you to Feel everything in here! Feel everysingle mysteries of this mysterious universe 369, I will be uploading articles about the greatest discovered and unsolved mysteries in Physics.

You can also listen to my music that awakens your inner consciousness to experience the incredible secrets of universe. This website is only for those who are enthusiastic to know the universe, to feel the universe and to explore the universe. 

Welcome to the mysterious universe 369!

Let the posts
come to you.

Thanks for submitting! You will be updated by every articles uploaded here in this mysterious universe 369. Every new articles will be sent to your gmail after you subscribe..

Stay Tuned!

  • Facebook
  • Instagram
bottom of page